
More Statistical Inference



Review

• Let event D = data we have observed.
• Let events H1, …, Hk be events representing 

hypotheses we want to choose between.
• Use D to pick the "best" H.

• There are two "standard" ways to do this, 
depending on what information we have 
available.



Maximum likelihood hypothesis

• The maximum likelihood hypothesis (HML) is 
the hypothesis that maximizes the probability 
of the data given that hypothesis.

• How to use it: compute P(D | Hi) for each 
hypothesis and select the one with the 
greatest value.

H
ML = argmax

i
P (D | Hi)



Maximum a posteriori (MAP) 
hypothesis

• The MAP hypothesis is the hypothesis that 
maximizes the posterior probability:

• The P(D | Hi) terms are now weighted by the 
hypothesis prior probabilities.

H
MAP = argmax

i
P (Hi | D)

= argmax
i

P (D | Hi)P (Hi)

P (D)
/ argmax

i
P (D | Hi)P (Hi)



One slide to rule them all
• The maximum likelihood hypothesis is the 

hypothesis that maximizes the probability of the 
observed data:

• The MAP hypothesis is the hypothesis that 
maximizes the posterior probability given D:

• P(Hi) is called the prior probability (or just prior).
• P(Hi|D) is called the posterior probability.

H
ML = argmax

i
P (D | Hi)

H
MAP = argmax

i
P (D | Hi)P (Hi)



• There are 3 robots. 
• Robot 1 will hand you a snack drawn at random from 

2 doughnuts and 7 carrots. 
• Robot 2 will hand you a snack drawn at random from 

4 apples and 3 carrots. 
• Robot 3 will hand you a snack drawn at random from 

7 burgers and 7 carrots. 
• Suppose your friend goes up to a robot (you don’t 

see this happen) and is given a carrot.  Which robot 
did your friend probably approach?

• What if the prior probability of your friend 
approaching robots 1, 2, and 3 are 20%, 40%, and 
40%, respectively? 



Probability vs hypothesis
• Sometimes you only care about which 

hypothesis is more likely, and sometimes you 
need the actual probability.

=
P (D | Hi)P (Hi)P

j P (D,Hj)

=
P (D | Hi)P (Hi)P
j P (D | Hj)P (Hj)



=
P (D | Hi)P (Hi)P
j P (D | Hj)P (Hj)

• In the robot problem, what is P(R3 | C)?



Probability vs hypothesis
• In the robot problem, what is P(R3 | C)?

= (1/2 * 4/10) / (7/9 * 2/10 + 3/7 * 4/10 + 1/2 * 4/10) =~ 0.3795



• Suppose I work in FJ in a windowless office.  I 
want to know whether it's raining outside.  The 
chance of rain is 70%. My colleague walks in 
wearing his raincoat. If it’s raining, there’s a 65% 
chance he’ll be wearing a raincoat. Since he’s very 
unfashionable, there’s a 45% chance he’ll be 
wearing his raincoat even if it’s not raining. My 
other colleague walks in with wet hair. When it’s 
raining there’s a 90% chance her hair will be wet. 
However, since she sometimes goes to the gym 
before work, there’s a 40% chance her hair will be 
wet even if it’s not raining. 

• What’s the posterior probability that it’s raining?  



• We can't solve this problem because we don’t 
have any information about the probability of 
Colleague 1 wearing a raincoat and Colleague 
2 having wet hair occurring simultaneously. 

• We don't know P(C, W | R).
• Let's make an assumption that C and W are 

conditionally independent given that it is 
raining (or not raining).

• P(C, W | R) = P(C | R) * P(W | R)
– (and similarly for given ~R)



Combining evidence
• It is very common to make this independence assumption for 

multiple pieces of evidence (data).

where

P (Hi | D1, . . . , Dm) =
P (D1, . . . , Dm | Hi)P (Hi)

P (D1, . . . , Dm)

=

�
P (D1 | Hi) · · ·P (Dm | Hi)

�
P (Hi)

P (D1, . . . , Dm)

=

�Qm
j=1 P (Dj | Hi)

�
P (Hi)

P (D1, . . . , Dm)

P (D1 . . . , Dm) =
kX

i=1

⇣ mY

j=1

P (Dj | Hi)
⌘
P (Hi)


