Agents

- N o )

percepts

AGENT Sensors -g—

What is the
world like now

ENVIRONMENT

Y

Action to
be done

‘ actions

Actuators 2

\. . . >,

Agents interact with their environment through sensors and
actuators.



Rational Agents

e Rational agent:

— For every possible percept sequence, a rational
agent should

— select an action that is expected to maximize its
performance measure,

— given evidence provided by the percept sequence
and whatever built-in knowledge the agent has.



Rational Agents

e Rational agent:

— For every possible percept sequence, a rational
agent should

— select an action that is expected to maximize its
performance measure,

— given evidence provided by the percept sequence
and whatever built-in knowledge the agent has.



Rational Agents

e Rational agent:

— For every possible percept sequence, a rational
agent should

— select an action that is expected to maximize its
performance measure,

— given evidence provided by the percept sequence
and whatever built-in knowledge the agent has.



Rational Agents

e Rational agent:

— For every possible percept sequence, a rational
agent should

— select an action that is expected to maximize its
performance measure,

— given evidence provided by the percept sequence
and whatever built-in knowledge the agent has.



Environments

Fully-observable vs partially-observable
Single agent vs multiple agents
Deterministic vs non-deterministic
Episodic vs sequential

Static or dynamic

Discrete or continuous



State Space Search



Environments

Fully-observable vs partially-observable
Single agent vs multiple agents
Deterministic vs stochastic

Episodic vs sequential

Static or dynamic

Discrete or continuous



Overview

Problem-solving as search

How to formulate an Al problem as search.

Uninformed search methods



What is search? (3.1)

G0aL
=




What is search?



Environmental factors needed

Static — The world does not change on its
own, and our actions don't change it.

Discrete — A finite number of individual
states exist rather than a continuous space of
options.

Observable — States can be determined by
observations.

Deterministic — Action have certain
outcomes.



The environment is all the information about the
world that remains constant while we are solving
the problem.

A state is the set of properties that define the
current conditions of the world our agent is in.

— Think of this as a snapshot of the world at a given point
in time.

— The entire set of possible states is called the state
space.

The initial state is the state the agent begins in.

A goal state is a state where the agent may end
the search.

Agents move from state to state by taking actions.
Moving from state to state has an associated cost.



How does an agent know what actions are possible in a
state?

— Imagine a function ACTIONS(s) that returns the set of
actions possible in a state s.

How does an agent know what state they go to when
they take an action?

— Imagine a function RESULT(s, a) that returns the new state s'
that you end up in when taking action a from state s.

How does an agent know when they have reached a goal
state?

— Imagine a function IS-GOAL(s) that returns true/false.

How does an agent know the cost of moving from one
state to another?

— Imagine a function ACTION-COST(s, a, s') which returns the
cost of taking action a in state s and moving to state s'.



Formulating problems as search (3.2)

* Canonical problem: route-finding
— Route-finding with traveling salesperson problem.

 Sliding block puzzle (almost any kind of game
or puzzle can be formulated this way).

* Roomba problem.



Formulate navigation problem

Search Map




Formulate navigation problem



Formulate 8-puzzle problem



Formulate Roomba problem



Formulate Roomba problem



Formulating problems as search

* A solution to a search problem is a path
between the initial state and a goal state.

* The quality of a solution is measured by path
cost, which is the sum of all the individual
costs along the way.

* Optimal solutions have the lowest cost of any
possible path.



 Side note:

* Consider whether the search space forms a
tree or a graph.

— Often there are faster versions of these algorithms
for searching trees.



Recap

 What things do we need to define in order to
formulate a problem as a search problem?



* Always a good idea to try to visualize the
graph of the search space.

lQAg N

&

L

R

)

Gs:"..

|
& T

L

£

o &)

G“Q

N
5.

AQOn

»

&




Generic search algorithms (3.3)

All search algorithms work in essentially the
same manner:

Start with initial state.

Generate all possible successor states (a.k.a.
"expanding a node."

Pick a new node to expand.
Continue until we find a goal state.



There are two simultaneous graph-like structures
used in search algorithms:
— (1) Graph (or tree) of underlying state space.
— (2) Tree maintaining the record of the current search
in progress (the search tree).
(1) does not depend on the current search being
run.

(1) is sometimes not even stored in memory (too
big!)
(2) always depends on the current search, and is

always stored in memory. It is created on the fly
during the running of the search algorithm.



Search tree

* A node n of the search tree stores:
— a state (of the state space)
— a pointer to the state's parent node (usually)

— the action that got you from the parent to n
(sometimes)

— the path cost g(n): cost of the path so far from the
initial state to n.



Generic search algorithms' data
structures

* Frontier: a data structure storing the
collection of nodes that are available to be
examined next in the algorithm.

— Often represented as a stack, queue, or priority
queue.

* Reached: a map from states to nodes.

— Used to quickly access the priorities of states

stored in the frontier to see if the algorithm has
found a better priority.



How do you evaluate a search
algorithm?
Completeness — Does the algorithm always
find a solution if one exists?

Optimality — Does the algorithm find the best
solution?

Time complexity
Space complexity



Uninformed search methods

e These methods have no information about

which nodes are on promising paths to a
solution.

e Also called: blind search



Uninformed search algorithms

 Breadth-first search

— Variant — Uniform-cost search

* Depth-first search



Breadth-first search

* Choose shallowest node for expansion.

e Data structure for frontier?
— Queue (regular, FIFO)

* Complete? Optimal? Time? Space?



Search Map




Depth-first search

* Choose deepest node to expand.

e Data structure for frontier?
— Stack (or just use recursion)

* Complete? Optimal? Time? Space?



Search Map




Uniform-cost search

* Choose node with lowest path cost g(n) for
expansion.

e Data structure for frontier?
— Priority queue

e Suppose we come upon the same state twice.
Do we re-add to the frontier?

— Yes, if lower path cost.



Search Map




Uniform-cost search

Choose node with lowest path cost g(n) for
expansion.

Data structure for frontier?
— Priority queue

Suppose we come upon the same state twice.
Do we re-add to the frontier?

— Yes, if lower path cost.

Complete? Optimal? Time? Space?



Review — State Space Search

e Strategy — Discover the best (shortest,
cheapest, quickest, etc) path from the initial
state to a goal state.

* State:

* State space:



Review — State Space Search
Node:

Search tree:

Frontier:

Reached:



Review — Uniform Cost Search

e aka Dijkstra's algorithm

* Frontier = priority queue
— Sorted by g(n):

* Always expand lowest g(n) node on the
frontier.

* Time/Space:
* Complete? Optimal?



A* and variations

e Same algorithm as uniform-cost search.

e Uses a different evaluation function to sort
the priority queue.
* Need a heuristic function, h(n).

— h(n) = Estimate of lowest-cost path from node n to
a goal state.

— In other words = an estimate of the distance
remaining.



Visualizing a heuristic function



A* Algorithm

e Sort priority queue by a function f(n), which

should be the estimated lowest-cost path
through node n.

* How do we define f(n)?

— Remember: g(n) = sum of costs from start state to
node n.

— h(n) = Estimate of lowest-cost path from node n to
a goal state.

—f(n) = g(n) + h(n)




Search Map

G h(n) estimates

o I
=)
S

[\)_L
N A

o O
W -

OMMOO®>»S
o P 0w
S

L
N
N

4.5




Properties of A*



Heuristics

* A heuristic function h(n) is admissible if it
never over-estimates the true lowest cost to a
goal state from node n.

e Equivalent: h(n) must always be less than or
equal to the true cost from node n to a goal.

 What happens if we just set h(n) = 0 for all n?



Heuristics

A heuristic function h(n) is consistent if values of
h(n) along any path in the search tree are non-
decreasing.

Equivalent definition of consistency: given a node
n, and an action which takes you from n to node
n'

h(n) <= cost(n, a, n') + h(n')

h(n) — h(n') <= cost(n, a, n')

Consistency implies admissibility (but not the
other way around).

Difficult to invent (natural) heuristics that are
admissible but not consistent.



A* Algorithm

 A* is optimal if h(n) is consistent (and
therefore admissible).
— If your search space is a tree, A* only needs an

admissible heuristic to be optimal, but this is
uncommon.



Where do heuristics come from?



Where do heuristics come from?



Greedy best-first search

e Use just h(n) to sort priority queue.
* Optimal?
* Complete?



Summary

e Uniform cost search (Dijkstra) [sort by g(n)]
— Complete and optimal.
 A* [sort by f(n) = g(n) + h(n)]

— Complete and optimal, assuming an admissible
and consistent heuristic.

* Greedy best first search [sort by h(n)]

— Complete, but not optimal.



Search Map & h(n)_estime

-
—

-
S

WN = O
(SR N

o O
G -

o
I

T IOTMMOOWT>P>S

s
o N




Stanley Milgram

TaHoMAS BBLASS, Pu.D.

——



Travers & Milgram (1969)

To: Joe Smith

~ Stockbroker '
Boston, MA
~¢ -~

7N

Source ' ,!\
« & X

7N

e 296 letters
e 22% reached target
* Median chain length =6






