
Extra Practice for Final 
 
Reinforcement Learning Problem 
 
You are designing an AI system to play a game involving several slot machines.  Each turn, the AI must play the 
slot machine it is at and then it must take an action that moves it to an adjacent location.  (Note that, in this 
problem, the agent is not allowed to repeat a slot machine two times in a row.)  The probability distribution 
for each slot machine is known (see below), and the starting location of the agent is at the left-most slot 
machine.  Each turn, the agent loses $1 as the cost of playing the slot machine.  (Note that you are allowed to 
have a negative score, here.) 
 
Slot 1  Slot 2  Slot 3  Slot 4 
$0 – 50% $0-80% $0-60% $0-99% 
$1 – 30% $5 – 20% $1-30% $150-1% 
$2 – 20%   $4-10% 
 
Create and fill out a value learning table (with three rounds) for this game, using the same approach as we 
used in class.  Use a value of .9 for Ꝩ.  (Note that, to find the immediate reward for a state, you can sum up the 
rewards multiplied by their corresponding probabilities.) 
 

 Slot1 Slot2 Slot3 Slot4 
Round 1 0 -0.3 0.5 -0.3 
Round 2 -0.27 0.15 0.23 0.15 
Round 3 0.135 -0.093 0.635 -0.093 

 
(See calculations below:) 
 
 
Round 1: 
Q(Slot1) – can only move to slot2 
Value at Slot2 = R + max(Ꝩ * (future rewards)) - cost 
R = .8 * $0 + .2 * $5 = $1.00 
Value at Slot2 = 1 + 0 – 1 = 0 
 
 
Q(Slot2) – can move to slot 1 or slot 3 
Value of slot 1 = R + max(Ꝩ * (future rewards)) - cost 
R = .5 * $0 + .3 * $1 + .2 * $2 = $0.70 
Value at Slot1 = .7 + 0 – 1 = -.3 
OR 
Value of Slot3 = R + max(Ꝩ * (future rewards)) - cost 
R = .6 * $0 + .3 * $1 + .1 * $4 = $0.70 
Value at Slot3 = .7 + 0 – 1 = -.3 
 
Both options are equally sound, so either works. 
 
 
  



Q(Slot3) – can move to slot 2 or 4 
Value at Slot2 = R + max(Ꝩ * (future rewards)) - cost 
R = .8 * $0 + .2 * $5 = $1.00 
Value at Slot 2 = 1 + 0 – 1 = 0 
OR 
Value at Slot4 = R + max(Ꝩ * (future rewards)) - cost 
R = .99 * $0 + .01 * $150 = $1.50 
Value at Slot 4 = .7 + 0 – 1 = .50 
 
The best action is to choose slot4 
 
 
Q(Slot4) – can only move to slot 3 
Value at Slot 3 = R + max(Ꝩ * (future rewards)) - cost 
R = .6 * $0 + .3 * $1 + .1 * $4 = $0.70 
Value at Slot 3 = .7 + 0 – 1 = -.3 
 
Round 2: 
 
Q(Slot1) – can only move to slot2 
Value at Slot2 = R + max(Ꝩ * (future rewards)) - cost 
R = .8 * $0 + .2 * $5 = $1.00 
Value at Slot2 = 1 + .9 * -.3  – 1 = -.27 
 
 
Q(Slot2) – can move to slot 1 or slot 3 
Value of slot 1 = R + max(Ꝩ * (future rewards)) - cost 
R = .5 * $0 + .3 * $1 + .2 * $2 = $0.70 
Value at Slot1 = .7 + .9 * -.3 – 1 = -.57 
OR 
Value of Slot3 = R + max(Ꝩ * (future rewards)) - cost 
R = .6 * $0 + .3 * $1 + .1 * $4 = $0.70 
Value at Slot3 = .7 + .9 * .5 – 1 = +.15 
 
The best action is to choose slot3 (q = +.15). 
 
 
Q(Slot3) – can move to slot 2 or 4 
Value at Slot2 = R + max(Ꝩ * (future rewards)) - cost 
R = .8 * $0 + .2 * $5 = $1.00 
Value at Slot 2 = 1 + .9 * -.3 – 1 = -.27 
OR 
Value at Slot4 = R + max(Ꝩ * (future rewards)) - cost 
R = .99 * $0 + .01 * $150 = $1.50 
Value at Slot 4 = $1.50 + .9*-.3 – 1 = $0.23 
 
The best action is to choose slot4 (q = 0.23). 
 
  



Q(Slot4) – can only move to slot 3 
Value at Slot 3 = R + max(Ꝩ * (future rewards)) - cost 
R = .6 * $0 + .3 * $1 + .1 * $4 = $0.70 
Value at Slot 3 = .7 + .9 * .5 – 1 = .15 
 
 
 
Round 3: 
 
Q(Slot1) – can only move to slot2 
Value at Slot2 = R + max(Ꝩ * (future rewards)) - cost 
R = .8 * $0 + .2 * $5 = $1.00 
Value at Slot2 = 1 + .9 * .15  – 1 = .135 
 
 
Q(Slot2) – can move to slot 1 or slot 3 
Value of slot 1 = R + max(Ꝩ * (future rewards)) - cost 
R = .5 * $0 + .3 * $1 + .2 * $2 = $0.70 
Value at Slot1 = .7 + .9 * -.27 – 1 = -.543 
OR 
Value of Slot3 = R + max(Ꝩ * (future rewards)) - cost 
R = .6 * $0 + .3 * $1 + .1 * $4 = $0.70 
Value at Slot3 = .7 + .9 * 0.23 – 1 = -0.093 
 
The best action is to choose slot3 (q = -0.093). 
 
 
Q(Slot3) – can move to slot 2 or 4 
Value at Slot2 = R + max(Ꝩ * (future rewards)) - cost 
R = .8 * $0 + .2 * $5 = $1.00 
Value at Slot 2 = 1 + .9 * .15 – 1 = .135 
OR 
Value at Slot4 = R + max(Ꝩ * (future rewards)) - cost 
R = .99 * $0 + .01 * $150 = $1.50 
Value at Slot 4 = $1.50 + .9*.15 – 1 = $0.635 
 
The best action is to choose slot4 (q = .635). 
 
Q(Slot4) – can only move to slot 3 
Value at Slot 3 = R + max(Ꝩ * (future rewards)) - cost 
R = .6 * $0 + .3 * $1 + .1 * $4 = $0.70 
Value at Slot 3 = .7 + .9 * 0.23 – 1 = -0.093 
 
  



Markov Chain/Hidden Markov Model Problem 
 
Suppose that the menu of the Rat each day differs probabilistically, based on the Markov Model properties.  If 
scones are served on a given day, the probability that they’ll be served the next day is 85%.  If scones are not 
served, the probability that they'll be served on the next day is 60%.  Use the forward algorithm unless 
otherwise instructed. 
 

A. Given this information, and given that on Monday scones were served at the Rat, what is the 
probability that scones will be served on Wednesday?  What is the probability that scones are served 
every weekday (Monday through Friday) this week? 

 

𝐏(𝐬𝐜𝐨𝐧𝐞𝐬 𝐨𝐧 𝐖𝐞𝐝𝐧𝐞𝐬𝐝𝐚𝐲) =  |
1
0

| ∗ |
. 85 . 15
. 6 . 4

|
2

 

 
 
 For part 2, you can calculate each probability with the above formula and multiply 
P(Tues)*P(Wed)*P(Thurs)*P(Fri).  However, there’s a shortcut here: Since it’s asking for the probability of 
scones being served (given that scones were previously served), we *know* that probability: .85 
 
           P(scones on Tuesday – Friday) = .854 = .522 
 
 
 

Now, let’s expand the problem a little: If scones are served, the probability of cookies also being served 
is 5%.  If scones are not served, the probability of cookies being served is 80%.  

 
 

B. If you see people on campus eating cookies on Wednesday and Thursday (and not on Tuesday or 
Friday), what is the likelihood that scones were served in the cafeteria on those days, using the forward 
algorithm? 

 

𝐏(𝐬𝐜𝐨𝐧𝐞𝐬 𝐨𝐧 𝐓𝐮𝐞𝐬𝐝𝐚𝐲) =  |
1
0

| ∗ |
. 85 . 15
. 6 . 4

|
1

∗ |
. 05 0

0 . 8
| 

𝐏(𝐬𝐜𝐨𝐧𝐞𝐬 𝐨𝐧 𝐖𝐞𝐝𝐧𝐞𝐬𝐝𝐚𝐲) =  𝐏(𝐬𝐜𝐨𝐧𝐞𝐬 𝐨𝐧 𝐓𝐮𝐞𝐬𝐝𝐚𝐲) ∗ |
. 85 . 15
. 6 . 4

|
1

∗ |
. 95 0

0 . 2
| 

𝐏(𝐬𝐜𝐨𝐧𝐞𝐬 𝐨𝐧 𝐓𝐡𝐮𝐫𝐬𝐝𝐚𝐲) = 𝐏(𝐬𝐜𝐨𝐧𝐞𝐬 𝐨𝐧 𝐖𝐞𝐝𝐧𝐞𝐬𝐝𝐚𝐲) ∗ |
. 85 . 15
. 6 . 4

|
1

∗ |
. 95 0

0 . 2
| 

𝐏(𝐬𝐜𝐨𝐧𝐞𝐬 𝐨𝐧 𝐅𝐫𝐢𝐝𝐚𝐲) = 𝐏(𝐬𝐜𝐨𝐧𝐞𝐬 𝐨𝐧 𝐓𝐡𝐮𝐫𝐬𝐝𝐚𝐲) ∗ |
. 85 . 15
. 6 . 4

|
1

∗ |
. 05 0

0 . 8
| 

 
 
 
 

C. Using the previous problem, how does applying the forward-backward algorithm modify the observed 
probability of scones for Tuesday? 

 

𝐁(𝑭𝒓𝒊𝒅𝒂𝒚) =  |
. 85 . 15
. 6 . 4

|
1

∗ |
. 05 0

0 . 8
| ∗ |

1
1

| 

𝐁(𝑻𝒉𝒖𝒓𝒔𝒅𝒂𝒚) =  |
. 85 . 15
. 6 . 4

|
1

∗ |
. 95 0

0 . 2
| ∗ 𝐵(𝐹𝑟𝑖𝑑𝑎𝑦) 



 

𝐁(𝑾𝒆𝒅𝒏𝒆𝒔𝒅𝒂𝒚) =  |
. 85 . 15
. 6 . 4

|
1

∗ |
. 95 0

0 . 2
| ∗ 𝐵(𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦) 

 

𝐁(𝑻𝒖𝒆𝒔𝒅𝒂𝒚) =  |
. 85 . 15
. 6 . 4

|
1

∗ |
. 05 0

0 . 8
| ∗ 𝐵(𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦) 

 
The results of these formulas (Forward and backward) are multiplied together to get the final result; 
that is left as an exercise for you, if you desire.  (Remember that there is still an alpha in these results!  
You must marginalize this out to get the final probability values.) 
 

 
 
 
 
 
 
 
 
 
 
 
  



Neural Networks problem 
 
In this problem, we are required to create a perceptron that takes in three inputs (with int values ranging from 
0 to 10) and returns 1 if the inputs add up to 15 (or more). 
 
Using the initial weights of -1, 2, 3, and 4 and the training samples provided below, what are the weights for 
the neural network after two epochs?  (For this problem, assume we’re using a threshold activation function, 
where the value returned is 1 if the inputs * the weights add up to 0 or more.) 
 
Training Samples 
X1 X2 X3  Desired output 
8 6 0  0 
4 4 9  1 
0 8 8  1 
5 0 7  0 
 
 
 
Solution: 
 

Epoch Starting weights 

Example         Weighted Predict Error 

Updated weights 

          sum h(x) 
y – 
h(x) 

  w0 w1 w2 w3 x0 (bias) x1 x2 x3 y       w0 w1 w2 w3 
                                  

1 -1 2 3 4 1 8 6 0 0  33  1 -1  -2  -6  -3  4  
 

1  -2 -6  -3  4  1 4 4 9 1  -2 0  1   -1 -2 1 13 
 

 

1 -1  -2 1 13 1 0 8 8 1 111 1  0  -1  -2 1 13 
 

 

1  -1 -2 1 13 1 5 0 7 0 80 1 -1  -2  -7 -7 6 
 

 

2  -2 -7 -7 6 1 8 6 0 0  -98 0  0  -2  -7 -7 6 
 

 

2 -2  -7 -7 6 1 4 4 9 1 -4 0  1  -1 -1 -3 15 
 

 

2 -1  -1 -3 15 1 0 8 8 1 95 1 0 -1  -1 -3 15 
 

 

2  -1 -1 -3 15 1 5 0 7 0  99  1  -1 -2  -3 -11 7 
 

 
 
 
 
 
 



 
 
Weight update examples: 
 
W[it+1] = w[i] + ((y-h(x)) * x[i]) 
 
 
Round 1 

(

𝑤0

𝑤1

𝑤2
𝑤3

) = (

−1
2
3
4

) + (0 − 1) (

1
8
6
0

) =  (

−2
−6
−3
4

) 

 
Round 2 

(

𝑤0

𝑤1

𝑤2
𝑤3

) = (

−2
−6
−3
4

) + (1 − 0) (

1
4
4
9

) =  (

−1
−2
1

13

) 

 
Round 3 
-No changes 
 
Round 4 

(

𝑤0

𝑤1

𝑤2
𝑤3

) = (

−1
−2
1

13

) + (0 − 1) (

1
5
0
7

) =  (

−2
−7
−7
6

) 

 
Round 5 
-No changes 
 
Round 6 

(

𝑤0

𝑤1

𝑤2
𝑤3

) = (

−2
−7
−7
6

) + (1 − 0) (

1
4
4
9

) =  (

−1
−3
−3
15

) 

Round 7 
-No changes 
 
Round 8 

(

𝑤0

𝑤1

𝑤2
𝑤3

) = (

−1
−3
−3
15

) + (0 − 1) (

1
0
8
8

) =  (

−2
−3

−11
7

) 

 
  



You should be prepared for problems relating to the first half of the semester, including: 

• Bayes nets and probabilistic reasoning 

• Djikstra’s algorithm, A* algorithm, greedy best-first search 

• Minimax (with both alpha/beta pruning and with heuristics) 

• Which approach that we’ve talked about so far is best for a specific context and why 

• Heuristic design (including consistent/admissible), problem setup, and discussion about the state 
space. 

 
You should also be prepared for problems we’ve worked on since the first exam: 

• Statistical inference and naïve Bayes classifiers 

• Markov Chains and Hidden Markov Models 

• Reinforcement Learning strategies, including q-learning and v-learning algorithms 

• Neural networks 
 
This exam will be comprehensive-I recommend working through the problems from this guide and from the 
previous review guide on the course website.  The homeworks (and homework solutions) should also be very 
helpful in preparing for this exam. 
 
For this exam, you are allowed two pages of handwritten notes (front and back).  Calculators are not allowed 
for this exam. 


