Markov Chains



Toolbox

Search: uninformed/heuristic
Adversarial search
Probability

Bayes nets

— Naive Bayes classifiers

Statistical inference



Reasoning over time

* |n a Bayes net, each random variable (node)
takes on one specific value.

— Good for modeling static situations.

e What if we need to model a situation that is
changing over time?



Example: Comcast

* In 2004 and 2007, Comcast had the worst
customer satisfaction rating of any company or
gov't agency, including the IRS.

* | have cable internet service from Comcast, and
sometimes my router goes down. If the router is
online, it will be online the next day with
prob=0.8. If it's offline, it will be offline the next
day with prob=0.4.

* How do we model the probability that my router
will be online/offline tomorrow? In 2 days?



Example: Waiting in line

* You go to the Apple Store to buy the latest
iPhone. Every minute, the first personinline is
served with prob=0.5.

* Every minute, a new person joins the line with
probability
1 if the line length=0
2/3 if the line length=1
1/3 if the line length=2
O if the line length=3

e How do we model what the line will look like in 1
minute? In 5 minutes?



Markov Chains

* A Markov chain is a type of Bayes net with a

potentially infinite number of variables
(nodes).

* Each variable describes the state of the system
at a given point in time (t).

OnOnOnOm



Markov Chains

 Markov property:
P(X, | X1, X0, Xi3, o) = P(X, | Xi4)

 Probabilities for each transition are identical:
P(X, | X,.1) = P(X; | X,)

OnOnOnOm




Markov Chains

* Since these are just Bayes nets, we can use
standard Bayes net ideas.

— Shortcut notation: X;; will refer to all variables X;
through X;, inclusive.

* Common questions:

— What is the probability of a specific event
happening in the future?

— What is the probability of a specific sequence of
events happening in the future?



An alternate formulation

We have a set of states, S.

The Markov chain is always in exactly one
state at any given time t.

The chain transitions to a new state at each
time t+1 based only on the current state at
time t.

Pi; = P(Xee1 =3 | Xy =1)
Chain must specify p;; for all i and j, and
starting probabilities for P(X, = j) for all j.



Two different representations

* As a Bayes net:

OnOnOnOm

* As a state transition diagram (similar to a
DFA/NFA):




Formulate Comcast in both ways

e | have cable internet service from Comcast,
and sometimes my router goes down. If the
router is online, it will be online the next day
with prob=0.8. If it's offline, it will be offline
the next day with prob=0.4.

* Let’s draw this situation in both ways.

 Assume on day O, probability of router being
down is 0.5.
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Comcast

 What is the probability my router is offline for 3
days in a row (days O, 1, and 2)?
— P(X,=off, X,=off, X,=off)?
— P(X,=off | X,=off, X,=0ff)*P(X,=off, X,=off)  [mult rule]
— P(X,=off | X,=0ff, X,=0ff)*P(X,=0ff | X,=0ff) *P(X,=0ff)
— P(X,=off | X,;=off)*P(X =off | X,=0ff) *P(X,=0ff)
= Poftoft + Pofroff . P(Xg=0ff)
t
P(xo.t) = P(xo) H P(r; | xi—1)
1=1




More Comcast

e Suppose | don’t know if my router is online
right now (day 0). What is the prob it is offline
tomorrow?

— P(X=0ff)
— P(X =off) = P(X,=0ff, X,=on) + P(X,=off, X,=off)
— P(X =off) = P(X;=off | X,=on) * P(X,=on)

+ P(X,=off | X,=0off) * P(X,=off)

P(Xt11) ZP (Xt1 | @e) P(x¢)



More Comcast

e Suppose | don’t know if my router is online
right now (day 0). What is the prob it is offline
the day after tomorrow?

— P(X,=0ff)
— P(X,=off) = P(X,=off, X;=on) + P(X,=off, X,=off)
— P(X,=off) = P(X,=off| X,=on) * P(X,=on)

+ P(X,=off | X,=off) * P(X,=0ff)

P(X¢11) ZP Xiy1 | @e) P(xe)



Markov chains with matrices
Define a transition matrix for the chain:

0.8 0.2
0.6 0.4

Each row of the matrix represents the
transition probabilities leaving a state; each
column represents the next state.

Let v, = a row vector representing the
probability that the chain is in each state at
time t.

T —

— Xk
Ve=Viq o T



Formulate this matrix

f the stock market is up one day, then it will
oe up the next day with prob=0.7.

fit's down one day, it will be down the next
day with prob=0.4.



Mini-forward algorithm

Suppose we are given the value of X, or a
probability distribution over X, and we want to
predict X, Xi,5, Xii3---

Make row vector v, = P(X,)

— Note that v, can be something like [1, O] if you know
the true value of X, or it can be a distribution over
values.
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Back to the Apple Store...

You go to the Apple Store to buy the latest
iPhone.

Every minute, a new person joins the line with
probability

1 if the line length=0

2/3 if the line length=1

1/3 if the line length=2

0 if the line length=3

Immediately after (in the same minute), the first
person is helped with prob = 0.5

Model this as a Markov chain, assuming the line
starts empty. Draw the state transition diagram.

What is T? What is v,?



Every minute, a new person joins the line with probability
1 if the line length=0

2/3 if the line length=1
1/3 if the line length=2
0 if the line length=3

Immediately after (in the same minute), the first person is helped with prob = 0.5.
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* Markov chains are pretty easy!
* But sometimes they aren't realistic...

* What if we can't directly know the states of
the model, but we can see some indirect
evidence resulting from the states?



Weather

* Regular Markov chain
— Each day the weather is rainy or sunny.
— P(X; =rain | X,.; = rain) = 0.7
— P(X; =sunny| X, =sunny) =0.9

* Twist:

— Suppose you work in an office with no windows.
All you can observe is weather your colleague
brings their umbrella to work.



Hidden Markov Models

ne X's are the state variables (never directly
oserved).

ne E's are evidence variables.



Common real-world uses

e Speech processing:

— Observations are sounds, states are words or
phonemes.

 Localization:

— Observations are inputs from video cameras or
microphones, state is the actual location.

* Video processing (example):

— Extracting a human walking from each video
frame. Observations are the frames, states are
the positions of the legs.



Hidden Markov Models

° DCXt
° 3()%

° D(Et
° D(Et

Xi1, Xipr Xi 3 o) = P(X, | X 1)
Xt-l) = P(X, | Xo)

Xo: Eo:r1) = P(E; | X))

X) = P(E; | X9)



Hidden Markov Models

* Whatis P(X,., E{.)?

P(X,) HP(XZ- ' X,_1)P(E; | X;)



Common questions

* Filtering: Given a sequence of observations,
what is the most probable current state?

— Compute P(X, | e.)

* Prediction: Given a sequence of observations,
what is the most probable future state?
— Compute P(X,,, | e;.,) forsome k>0

* Smoothing: Given a sequence of observations,
what is the most probable past state?
— Compute P(X, | e,,) forsome k<t



Common gquestions

* Most likely explanation: Given a sequence of
observations, what is the most probable
sequence of states?

— Compute argmax P(x1.; | €1.¢)
L1:t

* Learning: How can we estimate the transition
and sensor models from real-world data?
(Future machine learning class?)



Hidden Markov Models

°(R,=vyes | R, =yes)=0.7
°(R,=vyes | R,;=n0)=0.1
(U, =vyes | R,=yes) =0.9
°(U,=vyes | R,=no) =0.2




Filtering

* Filtering is concerned with finding the most
probable "current"” state from a sequence of

evidence.
e Let's compute this.



Recall the "mini-forward algorithm"

For Markov chains:

P(Xt41) ZP Xiy1 | we) P(a)

with matrices: vt+1 T T, with vy = P(X,)
For HMM's:

P(Xit1 | €1:441) =
aP(eryr | Xep1) ) P(Xpvr | 0)P(ay | er:r)

Lt



Forward algorithm

Today is Day 2, and I've been pulling all-
nighters for two days!

My colleague brought their umbrella on days
1 and 2.

What is the probability it is raining today?
—that is, find P(X, | e,,) [filtering]

Assume initial distribution of rain/not-rain for
Day O is 50-50.



Matrices to the rescue!

* Define a transition matrix T as normal.

* Define a sequence of observation matrices O,
through O..

* Each O matrix is a diagonal matrix with the
entries corresponding to observation at time t
given each state.

Jit+1 = afrp - L - Ogqq

where each f is a row vector containing the
probability distribution at timestep t.



f1:0=[0.5, 0.5] f1:1=[0.75, 0.25] f1:2=[0.846, 0.154]

T = [0.7, 0.3]

RO R1 [0.1, ©.9]
01 = [0.9, 0.0]

[0.0, ©.2]

02 = [0.9, 0.0]

[0.0, ©.2]

f1:0 = P(RO) = [0.5, 0.5]
f1:1=P(R1 | ul) = & * f1:0 * T * 01 = a[0.36, 0.12] = [0.75, 0.25]
f1:2 =P(R2 | ul, u2) = a * f1:1 * T * 02 = «[0.495, 0.09] = [.846, .154]



Forward algorithm

* Note that the forward algorithm only gives
you the probability of X, taking into account
evidence at times 1 through t.

* In other words, say you calculate P(X, | e,)
using the forward algorithm, then you
calculate P(X, | e, e,).

— Knowing e2 changes your calculation of X1.
— Thatis, P(X; | e;) I=P(X; | e, &,)



Backward algorithm

* Updates previous probabilities to take into
account new evidence.
* Calculates P(X, | e,,) fork<t

— aka smoothing. (not the same kind of smoothing
as in Naive bayes)



Backward algorithm

* Algorithm generates a backward vector b for
every timestep t.

— This vector is based on the observation at time k
and the next day's backward vector.

bk:t =1+ Ok - bpt1:4
— The initial backwards vector is for day t+1 and is a
column vector of all 1's.

bt—l—l:t — [13 Tt 1]



Backwards algorithm

e Each backward vector is used to scale the
previous day's forward vector.

e After normalization, this is the updated
probability for day k.

P(Xy | e1:t) = afir X bt

 (Remember, that multiplication above is an
item by item multiplication, not a matrix
multiplication.)



Backward matrices

* Main equations:

bt =1 - Ok - by1:¢

bii1.¢ = |1;--- ;1] (column vector of 1s)

P(Xk | elzt) — afl:k X bk—l—l:t



f1:0=[0.5, 0.5] f1:1=[0.75, 0.25] f1:2=[0.846, 0.154]
b1:2=[0.4509, 0.1107] b2:2=[0.69, 0.27] b3:2=[1; 1]
mult=[0.803, 0.197] mult=[0.885, 0.115]

T =[0.7, 0

RO R1 [0.1, ©
01 = [0.9, ©

[0.0, ©

02 = [0.9, ©

[0.0, ©

b3:2 =[1; 1]

b2:2=T * 02 * b3:2=[0.69, 0.27]

P(R1 | ul,u2)=afl:1 xb2:2=a[0.5175, 0.0675] = [0.885, 0.115]
bl1l:2=T * 01 * b2:2 =[0.4509, 0.1107]

P(RO | ul, u2)=afl:0x b1:2 = a[0.2255, 0.0554] = [0.803, 0.197]

3]
9]

0]
2]

0]
2]



Forward-backward algorithm
fl:O — P(XO)
Ji+1 = afre - T - Oqa

Compute these forward from X, to wherever
you want to stop (X,)

b1t = [15- -+ 31
bt =1 - Ok - Dgy1:¢

P(Xk ‘ elzt) — Oéfl:k X bk—l—l:t

Compute these backwards from X,,, to X,.



	Slide 1: Markov Chains
	Slide 2: Toolbox
	Slide 3: Reasoning over time
	Slide 4: Example: Comcast
	Slide 5: Example: Waiting in line
	Slide 6: Markov Chains
	Slide 7: Markov Chains
	Slide 8: Markov Chains
	Slide 9: An alternate formulation
	Slide 10: Two different representations
	Slide 11: Formulate Comcast in both ways
	Slide 12
	Slide 13: Comcast
	Slide 14: More Comcast
	Slide 15: More Comcast
	Slide 16: Markov chains with matrices
	Slide 17: Formulate this matrix
	Slide 18: Mini-forward algorithm
	Slide 19: Back to the Apple Store...
	Slide 20
	Slide 22
	Slide 23: Weather
	Slide 24: Hidden Markov Models
	Slide 25: Common real-world uses
	Slide 26: Hidden Markov Models
	Slide 27: Hidden Markov Models
	Slide 28: Common questions
	Slide 29: Common questions
	Slide 30: Hidden Markov Models
	Slide 31: Filtering
	Slide 32: Recall the "mini-forward algorithm"
	Slide 35: Forward algorithm
	Slide 36: Matrices to the rescue!
	Slide 37
	Slide 38: Forward algorithm
	Slide 39: Backward algorithm
	Slide 40: Backward algorithm
	Slide 41: Backwards algorithm
	Slide 42: Backward matrices
	Slide 43
	Slide 44: Forward-backward algorithm

