
Markov Chains



Toolbox

• Search: uninformed/heuristic

• Adversarial search

• Probability

• Bayes nets

– Naive Bayes classifiers

• Statistical inference



Reasoning over time

• In a Bayes net, each random variable (node) 
takes on one specific value.

– Good for modeling static situations.

• What if we need to model a situation that is 
changing over time?



Example: Comcast

• In 2004 and 2007, Comcast had the worst 
customer satisfaction rating of any company or 
gov't agency, including the IRS.

• I have cable internet service from Comcast, and 
sometimes my router goes down.  If the router is 
online, it will be online the next day with 
prob=0.8.  If it's offline, it will be offline the next 
day with prob=0.4.

• How do we model the probability that my router 
will be online/offline tomorrow?  In 2 days?



Example: Waiting in line

• You go to the Apple Store to buy the latest 
iPhone.  Every minute, the first person in line is 
served with prob=0.5.

• Every minute, a new person joins the line with 
probability

1 if the line length=0
2/3 if the line length=1
1/3 if the line length=2
0 if the line length=3

• How do we model what the line will look like in 1 
minute?  In 5 minutes?



Markov Chains

• A Markov chain is a type of Bayes net with a 
potentially infinite number of variables 
(nodes).

• Each variable describes the state of the system 
at a given point in time (t).

X0 X1 X2 X3



Markov Chains

• Markov property: 
  P(Xt | Xt-1, Xt-2, Xt-3, …) = P(Xt | Xt-1)

• Probabilities for each transition are identical:
  P(Xt | Xt-1) = P(X1 | X0)

X0 X1 X2 X3



Markov Chains

• Since these are just Bayes nets, we can use 
standard Bayes net ideas.

– Shortcut notation: Xi:j will refer to all variables Xi 
through Xj, inclusive.

• Common questions:

– What is the probability of a specific event 
happening in the future?

– What is the probability of a specific sequence of 
events happening in the future?



An alternate formulation

• We have a set of states, S.

• The Markov chain is always in exactly one 
state at any given time t.

• The chain transitions to a new state at each 
time t+1 based only on the current state at 
time t.
 pij = P(Xt+1 = j | Xt = i)

• Chain must specify pij for all i and j, and 
starting probabilities for P(X0 = j) for all j.



Two different representations

• As a Bayes net:

• As a state transition diagram (similar to a 
DFA/NFA):

X0 X1 X2 X3

S1

S2

S3



Formulate Comcast in both ways

• I have cable internet service from Comcast, 
and sometimes my router goes down.  If the 
router is online, it will be online the next day 
with prob=0.8.  If it's offline, it will be offline 
the next day with prob=0.4.

• Let’s draw this situation in both ways.

• Assume on day 0, probability of router being 
down is 0.5.





Comcast

• What is the probability my router is offline for 3 
days in a row (days 0, 1, and 2)?

– P(X2=off, X1=off, X0=off)? 

– P(X2=off|X0=off, X1=off)*P(X0=off, X1=off)       [mult rule]

– P(X2=off|X0=off, X1=off)*P(X1=off|X0=off)*P(X0=off)

– P(X2=off|X1=off)*P(X1=off|X0=off)*P(X0=off)

– poff,off * poff,off * P(X0=off)



More Comcast

• Suppose I don’t know if my router is online 
right now (day 0).  What is the prob it is offline 
tomorrow?

– P(X1=off)

– P(X1=off) = P(X1=off, X0=on) + P(X1=off, X0=off)

– P(X1=off) = P(X1=off|X0=on) * P(X0=on) 

                     + P(X1=off|X0=off) * P(X0=off)



More Comcast

• Suppose I don’t know if my router is online 
right now (day 0).  What is the prob it is offline 
the day after tomorrow?

– P(X2=off)

– P(X2=off) = P(X2=off, X1=on) + P(X2=off, X1=off)

– P(X2=off) = P(X2=off|X1=on) * P(X1=on) 

                     + P(X2=off|X1=off) * P(X1=off)



Markov chains with matrices
• Define a transition matrix for the chain:

• Each row of the matrix represents the 
transition probabilities leaving a state; each 
column represents the next state.

• Let vt = a row vector representing the 
probability that the chain is in each state at 
time t.

• vt = vt-1 * T



Formulate this matrix

• If the stock market is up one day, then it will 
be up the next day with prob=0.7.

• If it's down one day, it will be down the next 
day with prob=0.4.



Mini-forward algorithm

• Suppose we are given the value of Xt or a 
probability distribution over Xt and we want to 
predict Xt+1, Xt+2, Xt+3...

• Make row vector vt = P(Xt)  
– Note that vt can be something like [1, 0] if you know 

the true value of Xt, or it can be a distribution over 
values.

• vt+1 = vt * T
• vt+2 = vt+1 * T = vt * T * T = vt * T2

• vt+3 = vt * T3

• vt+n = vt * T n



Back to the Apple Store...
• You go to the Apple Store to buy the latest 

iPhone. 
• Every minute, a new person joins the line with 

probability
 1 if the line length=0
 2/3 if the line length=1
 1/3 if the line length=2
 0 if the line length=3

• Immediately after (in the same minute), the first 
person is helped with prob = 0.5

• Model this as a Markov chain, assuming the line 
starts empty.  Draw the state transition diagram.  

• What is T?  What is v0?



• Every minute, a new person joins the line with probability
 1 if the line length=0
 2/3 if the line length=1
 1/3 if the line length=2
 0 if the line length=3

• Immediately after (in the same minute), the first person is helped with prob = 0.5.



• Markov chains are pretty easy!

• But sometimes they aren't realistic…

• What if we can't directly know the states of 
the model, but we can see some indirect 
evidence resulting from the states?



Weather

• Regular Markov chain

– Each day the weather is rainy or sunny.  

– P(Xt = rain | Xt-1 = rain) = 0.7

– P(Xt = sunny| Xt-1 = sunny) = 0.9

• Twist:

– Suppose you work in an office with no windows.  
All you can observe is weather your colleague 
brings their umbrella to work.



Hidden Markov Models

• The X's are the state variables (never directly 
observed).

• The E's are evidence variables.

X0 X1 X2 X3

E1 E2 E3



Common real-world uses

• Speech processing:
– Observations are sounds, states are words or 

phonemes.

• Localization:
– Observations are inputs from video cameras or 

microphones, state is the actual location.

• Video processing (example):
– Extracting a human walking from each video 

frame.  Observations are the frames, states are 
the positions of the legs.



Hidden Markov Models

• P(Xt | Xt-1, Xt-2, Xt-3, …) = P(Xt | Xt-1)

• P(Xt | Xt-1) = P(X1 | X0)

• P(Et | X0:t, E0:t-1) = P(Et | Xt)

• P(Et | Xt) = P(E1 | X1)

X0 X1 X2 X3

E1 E2 E3



Hidden Markov Models

• What is P(X0:t, E1:t)?

X0 X1 X2 X3

E1 E2 E3



Common questions

• Filtering: Given a sequence of observations, 
what is the most probable current state?

– Compute P(Xt | e1:t)

• Prediction: Given a sequence of observations, 
what is the most probable future state?

– Compute P(Xt+k | e1:t) for some k > 0

• Smoothing: Given a sequence of observations, 
what is the most probable past state?

– Compute P(Xk | e1:t) for some k < t



Common questions

• Most likely explanation: Given a sequence of 
observations, what is the most probable 
sequence of states?

– Compute 

• Learning: How can we estimate the transition 
and sensor models from real-world data? 
(Future machine learning class?)



Hidden Markov Models

• P(Rt = yes | Rt-1 = yes) = 0.7
P(Rt = yes | Rt-1 = no) = 0.1

• P(Ut = yes | Rt = yes) = 0.9
P(Ut = yes | Rt = no) = 0.2

R0 R1 R2 R3

U1 U2 U3



Filtering

• Filtering is concerned with finding the most 
probable "current" state from a sequence of 
evidence.

• Let's compute this.



Recall the "mini-forward algorithm"

For Markov chains:

with matrices: vt+1 = vt * T, with v0 = P(X0)

For HMM's:



Forward algorithm

• Today is Day 2, and I've been pulling all-
nighters for two days!

• My colleague brought their umbrella on days 
1 and 2.

• What is the probability it is raining today?

– that is, find P(Xt | e1:t)    [filtering]

• Assume initial distribution of rain/not-rain for 
Day 0 is 50-50.



Matrices to the rescue!
• Define a transition matrix T as normal.

• Define a sequence of observation matrices O1 
through Ot.

• Each O matrix is a diagonal matrix with the 
entries corresponding to observation at time t 
given each state.

where each f is a row vector containing the 
probability distribution at timestep t.



f1:0 = P(R0) = [0.5, 0.5]
f1:1 = P(R1 | u1) = 𝛂 * f1:0 * T * O1 = 𝛂[0.36, 0.12] = [0.75, 0.25]
f1:2 = P(R2 | u1, u2) = 𝛂 * f1:1 * T * O2 = 𝛂[0.495, 0.09] = [.846, .154]

T  = [0.7, 0.3]
     [0.1, 0.9]

O1 = [0.9, 0.0]
     [0.0, 0.2]

O2 = [0.9, 0.0]
     [0.0, 0.2]

f1:0=[0.5, 0.5] f1:1=[0.75, 0.25] f1:2=[0.846, 0.154]



Forward algorithm

• Note that the forward algorithm only gives 
you the probability of Xt taking into account 
evidence at times 1 through t.

• In other words, say you calculate P(X1 | e1) 
using the forward algorithm, then you 
calculate P(X2 | e1, e2).  

– Knowing e2 changes your calculation of X1.

– That is, P(X1 | e1) != P(X1 | e1, e2)



Backward algorithm

• Updates previous probabilities to take into 
account new evidence.

• Calculates P(Xk | e1:t) for k < t 

– aka smoothing.  (not the same kind of smoothing 
as in Naïve bayes)



Backward algorithm

• Algorithm generates a backward vector b for 
every timestep t.

– This vector is based on the observation at time k 
and the next day's backward vector.

– The initial backwards vector is for day t+1 and is a 
column vector of all 1's.



Backwards algorithm

• Each backward vector is used to scale the 
previous day's forward vector.

• After normalization, this is the updated 
probability for day k.

• (Remember, that multiplication above is an 
item by item multiplication, not a matrix 
multiplication.)



Backward matrices

• Main equations:

                                                    (column vector of 1s)



b3:2 = [1; 1]
b2:2 = T * O2 * b3:2 = [0.69, 0.27]
P(R1 | u1, u2) = 𝛂 f1:1 x b2:2 = 𝛂[0.5175, 0.0675] = [0.885, 0.115]
b1:2 = T * O1 * b2:2 = [0.4509, 0.1107]
P(R0 | u1, u2) = 𝛂 f1:0 x b1:2 = 𝛂[0.2255, 0.0554] = [0.803, 0.197]

T  = [0.7, 0.3]
     [0.1, 0.9]

O1 = [0.9, 0.0]
     [0.0, 0.2]

O2 = [0.9, 0.0]
     [0.0, 0.2]

f1:0=[0.5, 0.5] f1:1=[0.75, 0.25] f1:2=[0.846, 0.154]

b3:2=[1; 1]b1:2=[0.4509, 0.1107] b2:2=[0.69, 0.27]

mult=[0.885, 0.115]mult=[0.803, 0.197]



Forward-backward algorithm

Compute these forward from X0 to wherever 
you want to stop (Xt)

Compute these backwards from Xt+1 to X0.
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