
Adversarial Search



Toolbox so far

• Uninformed search

– BFS, DFS, uniform cost search

• Heuristic search

– A*

Common environmental factors: 
static, discrete, fully observable, 
deterministic actions.
Also: single agent, non-episodic.



There's More!

• Add a second agent, but 
 not controlled by us.

• Assume this agent is our adversary.

• Environment (for now)

– Still static

– Still discrete

– Still fully observable (for now)

– Still deterministic (for now)



Games!

• Deterministic, turn-taking, two-player, zero-
sum games of perfect information.
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Adversarial search

• Still search! 

– But another agent will alternate actions with us.

• Main new concept:

– Two players are called MAX and MIN.

– Only works for zero-sum games.

• Strictly competitive (no cooperation).

• What is good for me is equally bad for my opponent (in 
regards to winning and losing).

– Most “normal” 2-player games are zero-sum.



• Most all of our concepts from state-space search 
transfer here.

• S0: initial state
• TO-MOVE(s): Defines who makes the next move 

at a state.
• ACTIONS(s): Returns the set of legal moves in a 

state.
• RESULT(s, a): Returns what state you go into 

(transition model)
• IS-TERMINAL(s): Returns true if s is a terminal 

state.
• UTILITY(s, p): Numeric value of a terminal state s 

for player p.



Game Tree
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Minimax algorithm

• Select the best move for you, assuming your 
opponent is selecting the best move for 
themselves.

• Works like DFS.



Minimax algorithm
(assuming it is MAX's turn)

minimax(s) = 

  utility(s, MAX)        if IS-TERMINAL(s)

  maxa in actions(s) minimax(result(s, a))   if TO-MOVE(s)=MAX

  mina in actions(s) minimax(result(s, a)) if TO-MOVE(s)=MIN

result(s, a) means the new state generated 
by taking action a in state s.
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minimax(s) = 

  utility(s, MAX)        if IS-TERMINAL(s)

  maxa in actions(s) minimax(result(s, a))   if TO-MOVE(s)=MAX

  mina in actions(s) minimax(result(s, a)) if TO-MOVE(s)=MIN



Properties of minimax

• Complete?

– Yes (assuming tree is finite)

• Optimal?

– Yes (assuming opponent is also optimal)

• Time complexity: O(bm)

• Space complexity: O(bm)    (like DFS)

• But for chess, b ≈ 35, m ≈ 100, so this time is 
completely infeasible!



Real-World Minimax

• The minimax algorithm given here only stores 
the utility values; "real-world" minimax should 
store utility values and the move that gives 
you the value.

• This is usually done by keeping an auxiliary 
data structure called a transposition table; this 
table also cuts down on search time.
– Table stores, for every state, the minimax value 

and corresponding best move.



Nim



Nim

• How to represent a state?

• How to represent an action?



• Problem: minimax takes too long.

• Solution: improve algorithm to ignore parts of 
the tree that will definitely not be used 
(assuming both players play optimally).
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• Idea: for each node, keep track of the range of 
possible values that minimax could produce 
for that node.

• If we ever find ourselves at a node that we 
know will never be selected during (optimal) 
game play, we can "prune" it (end the 
recursion on this part of the tree).

• Enhanced version of minimax is called 
minimax with alpha-beta pruning.



Alpha-beta pruning

• Recall that minimax is a variant of depth-first 
search.  During the algorithm, we will only 
consider nodes along the path from the root 
node to the current node.

• At each node in the search, we will maintain 
two variables:

– alpha (α) = highest numeric value we’ve found so 
far on this path (best move for MAX)

– beta (β) = lowest numeric value we’ve found so far 
on this path (best choice for MIN)



Alpha-beta pruning

• Alpha and beta are inherited from parent 
nodes as we recursively descend the tree.

• If at a MAX node, we see a child node that has 
a value >= than beta, short-cut.

• If at a MIN node, we see a child node that has 
a value <= than alpha, short-cut.
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Alpha-beta code

• For programming, use code in the book.

• For offline use, use this idea:
alpha-beta(node):

 inherit alpha & beta from parents

 let v be each child value in turn:

  if v >= beta, then short-circuit and return v
  else if v > alpha, then alpha = v (and continue)
  
  if v <= alpha, then short-circuit and return v
  else if v < beta, then beta = v (and continue)

 if MAX, return alpha; if MIN, return beta (to parent)

If at a 
MAX 
node:

If at a 
MIN
node:

Do either the 
red or the blue 
for each state 
(not both).



• The results of alpha-beta depend on the order 
in which moves are considered among the 
children of a node.

• If possible, consider better moves first!





Real-world use of alpha-beta

• (Regular) minimax is normally run as a 
preprocessing step to find the optimal move 
from every possible situation.

• Minimax with alpha-beta can be run as a 
preprocessing step, but might have to re-run 
during play if a non-optimal move is chosen.

• Save states somewhere so if we re-encounter 
them, we don't have to recalculate everything.



Real-world use of alpha-beta

• States get repeated in the game tree because 
of transpositions.

• When you discover a best move in minimax or 
alpha-beta, save it in a lookup table (probably 
a hash table).

– Called a transposition table.



Real-world use of alpha-beta

• In the real-world, alpha-beta does not "pre-
generate" the game tree.

– The whole point of alpha-beta is to not have to 
generate all the nodes.

• The DFS part of minimax/alpha-beta is what 
generates the tree.



Summary so far

• Minimax: Find the best move for each player, 
assuming the other player plays perfectly.
– Based on DFS; searches the whole game tree.

– Usually used as a preprocessing step (too slow for 
real time).

• Alpha-beta: Always gives same result as 
minimax, but prunes sub-optimal branches.
– Can be used to preprocess game tree, but sub-

optimal moves will necessitate rerunning.

– Can be used in real time, but often still too slow.



Improving on alpha-beta

• Alpha-beta still must search down to terminal 
nodes sometimes.

– (and minimax has to search to terminal nodes all 
the time!)

• Improvement idea: can we get away with only 
looking a few moves ahead?



Heuristic minimax algorithm

h-minimax(s, d) = 

  eval(s, MAX)          if is-cutoff(s, d)

  maxa in actions(s) h-minimax(result(s, a), d+1)      if to-move(s)=MAX

  mina in actions(s) h-minimax(result(s, a), d+1)  if to-move(s)=MIN

minimax(s) = 
  utility(s, MAX)         if is-terminal(s)
  maxa in actions(s) minimax(result(s, a))        if to-move(s)=MAX
  mina in actions(s) minimax(result(s, a))    if to-move(s)=MIN

REGULAR MINIMAX

result(s, a) means the new state generated 
by taking action a in state s.

is-cutoff(s, d) is a boolean test that determines whether 
we should stop the search and evaluate our position.

HEURISTIC MINIMAX



How to create a good evaluation 
function?

• Trying to judge the probability of winning from 
a given state.

• Typically use features: simple characteristics of 
the game that correlate well with the 
probability of winning.



One last point
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What if a game has a “chance 
element”?



What if a game has a “chance 
element”?

We know how
to value the other
nodes.  How do we
value chance nodes?



Expected value

• The sum of the probability of each possible 
outcome multiplied by its value:

• xi is a possible value of (random variable) X.

• pi is the probability of xi happening.

   

E(X) = pixi
i

å



Expected minimax value
• Now three different 

cases to evaluate, 
rather than just two.
– MAX

– MIN

– CHANCE

EXPECTED-MINIMAX-VALUE(n) =

 UTILITY(n), If terminal node

 maxs  successors(n) MINIMAX-VALUE(s),  If MAX node

 mins  successors(n) MINIMAX-VALUE(s),  If MIN node

 s  successors(n) P(s) • EXPECTEDMINIMAX(s), If CHANCE node
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