Adversarial Search



Toolbox so far

 Uninformed search

— BFS, DFS, uniform cost search

e Heuristic search Common environmental factors:
static, discrete, fully observable,

— A*

deterministic actions.
Also: single agent, non-episodic.




There's More!

* Add a second agent, but ‘-5
not controlled by us. &

* Assume this agent is our adversary.

* Environment (for now)
— Still static
— Still discrete
— Still fully observable (for now)

— Still deterministic (for now)



Games!

* Deterministic, turn-taking, two-player, zero-
sum games of perfect information.




2007

best known 1s the four-color theorem (¥). This
deceptively simple conjecture—that given an

arbitrary map with countries, you need at most
Ch ECkel'S |S SO|V9d four different colors to guarantee that no two
adjoining countries have the same color—has
Jonathan Schaeffer,* Neil Burch, Yngvi Bjdrnsson,T Akihiro Kishimoto,t been extremely difficult to prove analytically. In
Martin Miiller, Robert Lake, Paul Lu, Steve Sutphen 1976, a computational proof was demonstrated.

Despite the convincing result, some mathema-
The game of checkers has roughly 500 billion billion possible positions (5 x 10%7%). The task of ticians were skeptical, distrusting proofs that had
solving the game, determining the final result in a game with no mistakes made by either player, is  not been verified using human-derived theorems.
daunting. Since 1989, almost continuously, dozens of computers have been working on solving Although important components of the checkers

The game of checkers has roughly 500 billion billion possible positions (5 x 10°Y). The task of
solving the game, determining the final result in a game with no mistakes made by either player, is
daunting. Since 1989, almost continuously, dozens of computers have been working on solving
checkers, applying state-of-the-art artificial intelligence techniques to the proving process. This
paper announces that checkers is now solved: Perfect play by both sides leads to a draw. This is the
most challenging popular game to be solved to date, roughly one million times as complex as
Connect Four. Artificial intelligence technology has been used to generate strong heuristic-based
game-playing programs, such as Deep Blue for chess. Solving a game takes this to the next level by
replacing the heuristics with perfection.

EODMONMNTON, ALREETA, CANADL

DEFPARTMENT OF

PUTING SCIENCE




Adversarial search

e Still search!

— But another agent will alternate actions with us.

* Main new concept:
— Two players are called MAX and MIN.

— Only works for zero-sum games.
e Strictly competitive (no cooperation).

 What is good for me is equally bad for my opponent (in
regards to winning and losing).

|II

— Most “normal” 2-player games are zero-sum.



Most all of our concepts from state-space search
transfer here.

Syt initial state

TO-MOVE(s): Defines who makes the next move
at a state.

ACTIONS(s): Returns the set of legal moves in a
state.

RESULT(s, a): Returns what state you go into
(transition model)

IS-TERMINAL(s): Returns true if s is a terminal
state.

UTILITY(s, p): Numeric value of a terminal state s
for player p.



Game Tree

MAX (X)
X X Tx
MIN () X X X
X[0 x| o] [x|
MAX (X) o
xlolx] x[o X|0
MIN (O) X X
x[o[x] [x[o[x] [x[o[x
TERMINAL ox [oox X
o X[ x[o| [X/o/o
Utility 1 0 +1



>
<
=

MIN

14

12



Minimax algorithm

e Select the best move for you, assuming your
opponent is selecting the best move for
themselves.

 Works like DFS.



Minimax algorithm

(assuming it is MAX's turn)

minimax(s) =
utility(s, MAX) if IS-TERMINAL(s)
MaX, in actions(s) MiNiMax(result(s, a)) if TO-MOVE(s)=MAX
MiNg in actions(s) MiNimax(result(s, a))  if TO-MOVE(s)=MIN

result(s, a) means the new state generated
by taking action a in state s.



MAX

MIN
3 12 8 2 4 6 14 5
minimax(s) =
utility(s, MAX) if IS-TERMINAL(s)

MaX, in actions(s) MiNiMax(result(s, a)) if TO-MOVE(s)=MAX
MiNg in actions(s) MiNimax(result(s, a))  if TO-MOVE(s)=MIN



Properties of minimax

Complete?

— Yes (assuming tree is finite)

Optimal?

— Yes (assuming opponent is also optimal)
Time complexity: O(b™)

Space complexity: O(bm) (like DFS)

But for chess, b = 35, m = 100, so this time is
completely infeasible!



Real-World Minimax

* The minimax algorithm given here only stores
the utility values; "real-world" minimax should
store utility values and the move that gives
you the value.

* This is usually done by keeping an auxiliary
data structure called a transposition table; this
table also cuts down on search time.

— Table stores, for every state, the minimax value
and corresponding best move.



Nim



Nim

* How to represent a state?
* How to represent an action?



* Problem: minimax takes too long.

e Solution: improve algorithm to ignore parts of
the tree that will definitely not be used
(assuming both players play optimally).




>
<
=

MIN

14

12



MAX

MIN




* |dea: for each node, keep track of the range of
possible values that minimax could produce
for that node.

* |f we ever find ourselves at a node that we
know will never be selected during (optimal)
game play, we can "prune" it (end the
recursion on this part of the tree).

* Enhanced version of minimax is called
minimax with alpha-beta pruning.



Alpha-beta pruning

e Recall that minimax is a variant of depth-first
search. During the algorithm, we will only
consider nodes along the path from the root

node to the current node.

At each node in the search, we will maintain

two variables:

— alpha (a) = highest numeric value we’ve found so
far on this path (best move for MAX)

— beta (B) = lowest numeric value we’ve found so far
on this path (best choice for MIN)



Alpha-beta pruning

* Alpha and beta are inherited from parent
nodes as we recursively descend the tree.

e If at a MAX node, we see a child node that has
a value >= than beta, short-cut.

e If at a MIN node, we see a child node that has
a value <=than alpha, short-cut.



function ALPHA-BETA-SEARCH(game, state) returns an action
player - game. TO-MOVE(stale)
value, move « MAX-VALUE(game, state, —oo,+00)
return move

function MAX-VALUE(game, state, c, 3) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game. UTILITY(state, player), null
V4 —00
for each a in game.ACTIONS(state) do
v2, a2 + MIN-VALUE(game, game.RESULT(state, a), o, 3)
if v2 > v then
v, move < v2, a
a+— MAX(a, v)
if v > [ then return v, move
return v, move

function MIN-VALUE(game, state, o, 3) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
vV <— +00
for each a in game.ACTIONS(state) do
v2, a2 + MAX-VALUE(game, game.RESULT(state, a), c, 3)
if v2 < v then
v, move < v2, a
B+ MIN(S3, v)
if v < o« then return v, move
return v, move



>
<
=

MIN

14

12



Alpha-beta code

* For programming, use code in the book.

* For offline use, use this idea:

alpha-beta(node): Do either the

_ _ red or the blue
inherit alpha & beta from parents for each state

let v be each child value in turn: (not both).

Ifata if v >= beta, then short-circuit and return v
MAX : :
else if v > alpha, then alpha = v (and continue)

node:

Ifata if v <= alpha, then short-circuit and return v

rl\]/lolgle: else if v < beta, then beta = v (and continue)

if MAX, return alpha; if MIN, return beta (to parent)



* The results of alpha-beta depend on the order

in which moves are considered among the
children of a node.

* |f possible, consider better moves first!



function ALPHA-BETA-SEARCH(game, state) returns an action
player - game. TO-MOVE(stale)
value, move « MAX-VALUE(game, state, —oo,+00)
return move

function MAX-VALUE(game, state, c, 3) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game. UTILITY(state, player), null
V4 —00
for each a in game.ACTIONS(state) do
v2, a2 + MIN-VALUE(game, game.RESULT(state, a), o, 3)
if v2 > v then
v, move < v2, a
a+— MAX(a, v)
if v > [ then return v, move
return v, move

function MIN-VALUE(game, state, o, 3) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
vV <— +00
for each a in game.ACTIONS(state) do
v2, a2 + MAX-VALUE(game, game.RESULT(state, a), c, 3)
if v2 < v then
v, move < v2, a
B+ MIN(S3, v)
if v < o« then return v, move
return v, move



Real-world use of alpha-beta

e (Regular) minimax is normally run as a
preprocessing step to find the optimal move
from every possible situation.

 Minimax with alpha-beta can be run as a
preprocessing step, but might have to re-run
during play if a non-optimal move is chosen.

e Save states somewhere so if we re-encounter
them, we don't have to recalculate everything.



Real-world use of alpha-beta

e States get repeated in the game tree because
of transpositions.

* When you discover a best move in minimax or
alpha-beta, save it in a lookup table (probably
a hash table).

— Called a transposition table.



Real-world use of alpha-beta

* |n the real-world, alpha-beta does not "pre-
generate"” the game tree.
— The whole point of alpha-beta is to not have to
generate all the nodes.
* The DFS part of minimax/alpha-beta is what
generates the tree.



Summary so far

 Minimax: Find the best move for each player,
assuming the other player plays perfectly.
— Based on DFS; searches the whole game tree.
— Usually used as a preprocessing step (too slow for
real time).
* Alpha-beta: Always gives same result as
minimax, but prunes sub-optimal branches.

— Can be used to preprocess game tree, but sub-
optimal moves will necessitate rerunning.

— Can be used in real time, but often still too slow.



Improving on alpha-beta

* Alpha-beta still must search down to terminal
nodes sometimes.

— (and minimax has to search to terminal nodes all
the time!)

* Improvement idea: can we get away with only
looking a few moves ahead?



Heuristic minimax algorithm

minimax(s) = REGULAR MINIMAX
utility(s, MAX) if is-terminal(s)
MaX iy actions(s) MiNiMax(result(s, a)) if to-move(s)=MAX
MiNg in actions(s) MiNimax(result(s, a)) if to-move(s)=MIN
h-minimax(s, d) = HEURISTIC MINIMAX
eval(s, MAX) if is-cutoff(s, d)
MaX; iy actions(s) N-Minimax(result(s, a), d+1) if to-move(s)=MAX

MiNg in actions(s) N-Minimax(result(s, a), d+1) if to-move(s)=MIN
result(s, a) means the new state generated
by taking action a in state s.
is-cutoff(s, d) is a boolean test that determines whether

we should stop the search and evaluate our position.



How to create a good evaluation
function?
* Trying to judge the probability of winning from
a given state.

e Typically use features: simple characteristics of
the game that correlate well with the
probability of winning.



MAX

MIN

MAX

O0O
X X X X

utility=1

One last point

O00O
X X X
O0O00O
X X X X
O00O O 0O (0)
X X X 0O X X X X X
etc... O0O (@)
X X X X X

utility=1



What if a game has a “chance
element’?

1 2 3 4 ] 6 7 B 9 10 11 12




What if a game has a “chance

Y
element ?
MAX A
CHANCE o
SR o
1/38 1187 118 1198
17 1) 6.5 5B
CHANCE & @ .. O )
1736 118 1118 18
1.1 1, 6.5 6.6
MAX A AN A 2\ We know how
- i to value the other
nodes. How do we
TERMINAL 5 _{ 1 R value chance nodes?



Expected value

* The sum of the probability of each possible
outcome multiplied by its value:

E(X)=apsx,

* X, is a possible value of (random variable) X.
* p; is the probability of x, happening.



Expected minimax value

* Now three different A A
cases to evaluate,
. CHANCE . . .
rather than just two. A TN
— MAX I il Y
— MIN
— CHANCE A R
EXPECTED-MINIMAX-VALUE(n) = TERMINAL o
UTILITY(n), If terminal node
MaX; ¢ successors(n) MINIMAX-VALUE(s), If MAX node
MiNg _ cuccessors(n) MINIMAX-VALUE(s), If MIN node

P(s) ® EXPECTEDMINIMAX(s), If CHANCE node

Z‘45 € successors(n)



17

2

12

15

25

14



	Slide 1: Adversarial Search
	Slide 2: Toolbox so far
	Slide 3: There's More!
	Slide 4: Games!
	Slide 5
	Slide 6: Adversarial search
	Slide 7
	Slide 8: Game Tree
	Slide 9
	Slide 10: Minimax algorithm
	Slide 11: Minimax algorithm (assuming it is MAX's turn)
	Slide 12
	Slide 13: Properties of minimax
	Slide 14: Real-World Minimax
	Slide 15: Nim
	Slide 16: Nim
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Alpha-beta pruning
	Slide 22: Alpha-beta pruning
	Slide 23
	Slide 24
	Slide 25: Alpha-beta code
	Slide 26
	Slide 27
	Slide 28: Real-world use of alpha-beta
	Slide 29: Real-world use of alpha-beta
	Slide 30: Real-world use of alpha-beta
	Slide 31: Summary so far
	Slide 32: Improving on alpha-beta
	Slide 33: Heuristic minimax algorithm
	Slide 34: How to create a good evaluation function?
	Slide 35: One last point
	Slide 36: What if a game has a “chance element”?
	Slide 37: What if a game has a “chance element”?
	Slide 38: Expected value
	Slide 39: Expected minimax value
	Slide 40

