
Adversarial Search

Toolbox so far

• Uninformed search

– BFS, DFS, uniform cost search

• Heuristic search

– A*

Common environmental factors:
static, discrete, fully observable,
deterministic actions.
Also: single agent, non-episodic.

There's More!

• Add a second agent, but
 not controlled by us.

• Assume this agent is our adversary.

• Environment (for now)

– Still static

– Still discrete

– Still fully observable (for now)

– Still deterministic (for now)

Games!

• Deterministic, turn-taking, two-player, zero-
sum games of perfect information.

2007

Adversarial search

• Still search!

– But another agent will alternate actions with us.

• Main new concept:

– Two players are called MAX and MIN.

– Only works for zero-sum games.

• Strictly competitive (no cooperation).

• What is good for me is equally bad for my opponent (in
regards to winning and losing).

– Most “normal” 2-player games are zero-sum.

• Most all of our concepts from state-space search
transfer here.

• S0: initial state
• TO-MOVE(s): Defines who makes the next move

at a state.
• ACTIONS(s): Returns the set of legal moves in a

state.
• RESULT(s, a): Returns what state you go into

(transition model)
• IS-TERMINAL(s): Returns true if s is a terminal

state.
• UTILITY(s, p): Numeric value of a terminal state s

for player p.

Game Tree

3 12 8 2 4 6 14 5 2

MAX

MIN

Minimax algorithm

• Select the best move for you, assuming your
opponent is selecting the best move for
themselves.

• Works like DFS.

Minimax algorithm
(assuming it is MAX's turn)

minimax(s) =

 utility(s, MAX) if IS-TERMINAL(s)

 maxa in actions(s) minimax(result(s, a)) if TO-MOVE(s)=MAX

 mina in actions(s) minimax(result(s, a)) if TO-MOVE(s)=MIN

result(s, a) means the new state generated
by taking action a in state s.

3 12 8 2 4 6 14 5 2

MAX

MIN

minimax(s) =

 utility(s, MAX) if IS-TERMINAL(s)

 maxa in actions(s) minimax(result(s, a)) if TO-MOVE(s)=MAX

 mina in actions(s) minimax(result(s, a)) if TO-MOVE(s)=MIN

Properties of minimax

• Complete?

– Yes (assuming tree is finite)

• Optimal?

– Yes (assuming opponent is also optimal)

• Time complexity: O(bm)

• Space complexity: O(bm) (like DFS)

• But for chess, b ≈ 35, m ≈ 100, so this time is
completely infeasible!

Real-World Minimax

• The minimax algorithm given here only stores
the utility values; "real-world" minimax should
store utility values and the move that gives
you the value.

• This is usually done by keeping an auxiliary
data structure called a transposition table; this
table also cuts down on search time.
– Table stores, for every state, the minimax value

and corresponding best move.

Nim

Nim

• How to represent a state?

• How to represent an action?

• Problem: minimax takes too long.

• Solution: improve algorithm to ignore parts of
the tree that will definitely not be used
(assuming both players play optimally).

3 12 8 2 4 6 14 5 2

MAX

MIN

3 12 8 2 4 6 14 5 2

MAX

MIN 3 <=2

>=3

• Idea: for each node, keep track of the range of
possible values that minimax could produce
for that node.

• If we ever find ourselves at a node that we
know will never be selected during (optimal)
game play, we can "prune" it (end the
recursion on this part of the tree).

• Enhanced version of minimax is called
minimax with alpha-beta pruning.

Alpha-beta pruning

• Recall that minimax is a variant of depth-first
search. During the algorithm, we will only
consider nodes along the path from the root
node to the current node.

• At each node in the search, we will maintain
two variables:

– alpha (α) = highest numeric value we’ve found so
far on this path (best move for MAX)

– beta (β) = lowest numeric value we’ve found so far
on this path (best choice for MIN)

Alpha-beta pruning

• Alpha and beta are inherited from parent
nodes as we recursively descend the tree.

• If at a MAX node, we see a child node that has
a value >= than beta, short-cut.

• If at a MIN node, we see a child node that has
a value <= than alpha, short-cut.

3 12 8 2 4 6 14 5 2

MAX

MIN

Alpha-beta code

• For programming, use code in the book.

• For offline use, use this idea:
alpha-beta(node):

 inherit alpha & beta from parents

 let v be each child value in turn:

 if v >= beta, then short-circuit and return v
 else if v > alpha, then alpha = v (and continue)

 if v <= alpha, then short-circuit and return v
 else if v < beta, then beta = v (and continue)

 if MAX, return alpha; if MIN, return beta (to parent)

If at a
MAX
node:

If at a
MIN
node:

Do either the
red or the blue
for each state
(not both).

• The results of alpha-beta depend on the order
in which moves are considered among the
children of a node.

• If possible, consider better moves first!

Real-world use of alpha-beta

• (Regular) minimax is normally run as a
preprocessing step to find the optimal move
from every possible situation.

• Minimax with alpha-beta can be run as a
preprocessing step, but might have to re-run
during play if a non-optimal move is chosen.

• Save states somewhere so if we re-encounter
them, we don't have to recalculate everything.

Real-world use of alpha-beta

• States get repeated in the game tree because
of transpositions.

• When you discover a best move in minimax or
alpha-beta, save it in a lookup table (probably
a hash table).

– Called a transposition table.

Real-world use of alpha-beta

• In the real-world, alpha-beta does not "pre-
generate" the game tree.

– The whole point of alpha-beta is to not have to
generate all the nodes.

• The DFS part of minimax/alpha-beta is what
generates the tree.

Summary so far

• Minimax: Find the best move for each player,
assuming the other player plays perfectly.
– Based on DFS; searches the whole game tree.

– Usually used as a preprocessing step (too slow for
real time).

• Alpha-beta: Always gives same result as
minimax, but prunes sub-optimal branches.
– Can be used to preprocess game tree, but sub-

optimal moves will necessitate rerunning.

– Can be used in real time, but often still too slow.

Improving on alpha-beta

• Alpha-beta still must search down to terminal
nodes sometimes.

– (and minimax has to search to terminal nodes all
the time!)

• Improvement idea: can we get away with only
looking a few moves ahead?

Heuristic minimax algorithm

h-minimax(s, d) =

 eval(s, MAX) if is-cutoff(s, d)

 maxa in actions(s) h-minimax(result(s, a), d+1) if to-move(s)=MAX

 mina in actions(s) h-minimax(result(s, a), d+1) if to-move(s)=MIN

minimax(s) =
 utility(s, MAX) if is-terminal(s)
 maxa in actions(s) minimax(result(s, a)) if to-move(s)=MAX
 mina in actions(s) minimax(result(s, a)) if to-move(s)=MIN

REGULAR MINIMAX

result(s, a) means the new state generated
by taking action a in state s.

is-cutoff(s, d) is a boolean test that determines whether
we should stop the search and evaluate our position.

HEURISTIC MINIMAX

How to create a good evaluation
function?

• Trying to judge the probability of winning from
a given state.

• Typically use features: simple characteristics of
the game that correlate well with the
probability of winning.

One last point
O O O

X X X

O O O

X X X X

O O O

X X X X

O O O

X X X O X

O O O O

X X X X

O O O O

X X X X X

utility=1

etc…

MIN

MAX

MAX

utility=1

What if a game has a “chance
element”?

What if a game has a “chance
element”?

We know how
to value the other
nodes. How do we
value chance nodes?

Expected value

• The sum of the probability of each possible
outcome multiplied by its value:

• xi is a possible value of (random variable) X.

• pi is the probability of xi happening.

E(X) = pixi
i

å

Expected minimax value
• Now three different

cases to evaluate,
rather than just two.
– MAX

– MIN

– CHANCE

EXPECTED-MINIMAX-VALUE(n) =

 UTILITY(n), If terminal node

 maxs  successors(n) MINIMAX-VALUE(s), If MAX node

 mins  successors(n) MINIMAX-VALUE(s), If MIN node

 s  successors(n) P(s) • EXPECTEDMINIMAX(s), If CHANCE node

3 17 2 12 15 25 0 2 5 3 2 14

	Slide 1: Adversarial Search
	Slide 2: Toolbox so far
	Slide 3: There's More!
	Slide 4: Games!
	Slide 5
	Slide 6: Adversarial search
	Slide 7
	Slide 8: Game Tree
	Slide 9
	Slide 10: Minimax algorithm
	Slide 11: Minimax algorithm (assuming it is MAX's turn)
	Slide 12
	Slide 13: Properties of minimax
	Slide 14: Real-World Minimax
	Slide 15: Nim
	Slide 16: Nim
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Alpha-beta pruning
	Slide 22: Alpha-beta pruning
	Slide 23
	Slide 24
	Slide 25: Alpha-beta code
	Slide 26
	Slide 27
	Slide 28: Real-world use of alpha-beta
	Slide 29: Real-world use of alpha-beta
	Slide 30: Real-world use of alpha-beta
	Slide 31: Summary so far
	Slide 32: Improving on alpha-beta
	Slide 33: Heuristic minimax algorithm
	Slide 34: How to create a good evaluation function?
	Slide 35: One last point
	Slide 36: What if a game has a “chance element”?
	Slide 37: What if a game has a “chance element”?
	Slide 38: Expected value
	Slide 39: Expected minimax value
	Slide 40

