
Inheritance

Inheritance in Java expresses an "is-a" relationship, in contrast to a "has-a" relationship, which is expressed with
composition.

Composition:
Use this when you would say "An object of class A has an
object of class B."

• A dog has an owner.
• A car has an engine.
• A student has an advisor.
• A line segment has a starting point and an ending

point.
• A ComboPolygon has an array of Polygons.

Composition expresses that one class is a component (a
piece) of another class.

Inheritance:
Use this relationship to express when a class is a
specific kind of another class.

• A poodle is a specific kind of dog.
• A racecar is a specific kind of car.
• A textbook is a specific kind of book.

• Inheritance expresses that one class can do

everything another class can do, plus more:
– A racecar is a car that can also drive extra

fast around a race track.
– A textbook is a book that is written in a

specific style (and probably costs more.)

Syntax for inheritance:

public class BaseClass {
 // Whatever instance variables & methods you want
}

public class DerivedClass extends BaseClass {
 // Whatever instance variables & methods you want.
 // All variables & methods from the base class are inherited.
}

• The derived class inherits all the variables and methods from the base class, just as if they had been re-declared
(i.e., copy-and-pasted) in the derived class. So objects of the derived class act just like objects of the derived
class, except they might have extra abilities that are defined in the derived class.

• Variables and methods in classes may be declared public, private, or protected. Protected only comes into play
when inheritance is involved.

• The two classes involved in this relationship are also known as the parent class and the child class.

• When a derived class inherits from a base class:
o Inside the derived class, the derived class has access to all the public and protected members of the

base class.
o Inside the derived class, the derived class cannot access private members of the base class.
o Outside the derived class, the derived class has all the same public members as the base class has, plus

anything public declared in the derived class.
§ (except constructors)

Exercise:
• In the Parrot class, add a method for the parrot to sleep. This method should increase the parrot's energy by 5.
• Create a PetParrot class that inherits from the Parrot class. A PetParrot should be able to do everything a Parrot

can, plus:
o It should have a name that the user should be able to set.
o It should be able to talk, which decreases its energy by 1. How will you decrease the energy?

